CAS Number | 85-00-7 |
---|---|
Molecular Formula | C12H12N2+2 |
Molecular Weight | 184.242 |
InChI Key | SYJFEGQWDCRVNX-UHFFFAOYSA-N |
LogP | 1.4 |
Synonyms |
|
Separation type: Bridge Ion Separation Technology, or BIST™ by SIELC Technologies
Paraquat and Diquat are two of the most popular herbicides on the market. With fairly similar structures and interactions with typical ion-exchange columns, they are usually extremely difficult to separate. Using SIELC’s newly introduced BIST™ method, Paraquat and Diquat, which protonate in water, can be retained on a positively-charged anion-exchange BIST™ B column. There are two keys to this retention method: 1) a multi-charged, negative buffer, such as Sulfuric acid (H2SO4), which acts as a bridge, linking the positively-charged herbicide analytes to the positively-charged column surface and 2) a mobile phase consisting mostly of organic solvent (such as MeCN) to minimize the formation of a solvation layer around the charged analytes. What allows these two compounds to be separated using BIST™ is the slight difference in charge position between the two analytes. Since the analytes interact so close to the surface, the minor difference in charge distribution is magnified and therefore significantly affects each analyte’s retention ability. Using this new and unique analysis method, Paraquat and Diquat can be retained and UV detected at 250 nm.
Column | BIST B+, 4.6×150 mm, 5 µm, 100A |
Mobile Phase | MeCN – 70% |
Buffer | H2SO4 – 0.2% |
Flow Rate | 1.0 ml/min |
Detection | UV 250 nm |
Peak Retention Time | 4.7, 5.9 min |
Class of Compounds | Herbicides |
Analyzing Compounds | Paraquat and Diquat |
SIELC Technologies’ BIST™ Columns are a new and simple way to achieve many separations that are traditionally difficult or impossible to achieve with any other HPLC columns currently on the market! When used with our BIST™ mobile phases, these ion exchange columns can generate very strong retention of analytes that have the same charge polarity as the stationary phase, unlocking new chromatography applications that were previously too difficult to achieve.
Select optionsSIELC Technologies’ BIST™ Columns are a new and simple way to achieve many separations that are traditionally difficult or impossible to achieve with any other HPLC columns currently on the market! When used with our BIST™ mobile phases, these ion exchange columns can generate very strong retention of analytes that have the same charge polarity as the stationary phase, unlocking new chromatography applications that were previously too difficult to achieve.
Select optionsHigh Performance Liquid Chromatography (HPLC) Method for Analysis of Chlormequat, Mepiquat, Paraquat, Diquat
Column | Obelisc R, 4.6×150 mm, 5 µm, 100A |
Mobile Phase | MeCN – 40% |
Buffer | Ammonium Formate pH 3.0 |
Flow Rate | 1.0 ml/min |
Detection | ELSD 50C |
Class of Compounds | Herbicides |
Analyzing Compounds |
Chlormequat, Mepiquat, Cl-, Br-, Paraquat, Diquat |
SIELC has developed the mixed-mode Obelisc™ columns to be the first commercially available columns with Liquid Separation Cell technology (LiSC™). This cost effective duo can replace multiple HPLC columns such as reversed-phase (RP), AQ-type reversed-phase, polar-embedded group RP columns, normal-phase, cation-exchange, anion- exchange, ion-exclusion, and HILIC (Hydrophilic Interaction Liquid Chromatography) columns. By controlling just three orthogonal method parameters - Buffer concentration, Buffer pH, and Organic Modifier Concentration - users can adjust the column properties with pinpoint precision to separate complex mixtures.
Select options
There is a need to separate different herbicides and pesticides in one run with LC/MS compatible conditions. Paraquat, diquat and glyphosate were separated on reversed-phase tri-modal cation- and anion-exchange column (Obelisc R) and on HILIC/ion-exchange columns (Obelisc N). Method explores unique properties of mixed-mode stationary phase which retains and separates cations like paraquat and diquat and anions/zwitter-ions like glyphosate in one run. Since columns are compatible with 100% organic and 100% water, a wide range of gradients can be used for analysis as well as isocratic conditions where it is desired. Method can be used for quantitation of these compounds in various matrices (soil, ground water, crops, food, etc.)
Column | Obelisc R, 2.1×150 mm, 5 µm, 100A |
Mobile Phase | MeCN – 30% |
Buffer | Gradient AmFm pH 3.0 – 5-30 mM, 10 min |
Flow Rate | 0.4 ml/min |
Detection | UV, 250 nm, ELSD |
Class of Compounds |
Insecticide, Herbicide, Fungicide, Hydrophobic, Ionizable |
Analyzing Compounds | Paraquat, Diquat, Glyphosate |
SIELC has developed the mixed-mode Obelisc™ columns to be the first commercially available columns with Liquid Separation Cell technology (LiSC™). This cost effective duo can replace multiple HPLC columns such as reversed-phase (RP), AQ-type reversed-phase, polar-embedded group RP columns, normal-phase, cation-exchange, anion- exchange, ion-exclusion, and HILIC (Hydrophilic Interaction Liquid Chromatography) columns. By controlling just three orthogonal method parameters - Buffer concentration, Buffer pH, and Organic Modifier Concentration - users can adjust the column properties with pinpoint precision to separate complex mixtures.
Select optionsSIELC has developed the mixed-mode Obelisc™ columns to be the first commercially available columns with Liquid Separation Cell technology (LiSC™). This cost effective duo can replace multiple HPLC columns such as reversed-phase (RP), AQ-type reversed-phase, polar-embedded group RP columns, normal-phase, cation-exchange, anion- exchange, ion-exclusion, and HILIC (Hydrophilic Interaction Liquid Chromatography) columns. By controlling just three orthogonal method parameters - Buffer concentration, Buffer pH, and Organic Modifier Concentration - users can adjust the column properties with pinpoint precision to separate complex mixtures.
Select optionsParaquat, diquat and glyphosate were separated on reversed-phase tri-modal cation- and anion-exchange column (Obelisc R) and on HILIC/ion-exchange columns (Obelisc N). Method explores unique properties of mixed-mode stationary phase which retains and separates cations like paraquat and diquat and anions/zwitter-ions like glyphosate in one run. Since columns are compatible with 100% organic and 100% water, a wide range of gradients can be used for analysis as well as isocratic conditions where it is desired. Method can be used for quantitation of these compounds in various matrices (soil, ground water, crops, food, etc.)
Column | Sharc 1, 4.6×100 mm, 5 µm, 100A |
Mobile Phase | MeCN/MeOH – 90/10% |
Buffer | H2SO4 – 0.2 |
Flow Rate | 3 ml/min |
Detection | UV, 210 nm |
Class of Compounds |
Insecticide, Herbicide, Fungicide, Hydrophobic, Ionizable |
Analyzing Compounds | Paraquat, Diquat |
SIELC has developed the mixed-mode Obelisc™ columns to be the first commercially available columns with Liquid Separation Cell technology (LiSC™). This cost effective duo can replace multiple HPLC columns such as reversed-phase (RP), AQ-type reversed-phase, polar-embedded group RP columns, normal-phase, cation-exchange, anion- exchange, ion-exclusion, and HILIC (Hydrophilic Interaction Liquid Chromatography) columns. By controlling just three orthogonal method parameters - Buffer concentration, Buffer pH, and Organic Modifier Concentration - users can adjust the column properties with pinpoint precision to separate complex mixtures.
Select optionsSIELC has developed the mixed-mode Obelisc™ columns to be the first commercially available columns with Liquid Separation Cell technology (LiSC™). This cost effective duo can replace multiple HPLC columns such as reversed-phase (RP), AQ-type reversed-phase, polar-embedded group RP columns, normal-phase, cation-exchange, anion- exchange, ion-exclusion, and HILIC (Hydrophilic Interaction Liquid Chromatography) columns. By controlling just three orthogonal method parameters - Buffer concentration, Buffer pH, and Organic Modifier Concentration - users can adjust the column properties with pinpoint precision to separate complex mixtures.
Select optionsThe SHARC™ family of innovative columns are are the first commercially available columns with separation based primarily on hydrogen bonding. SHARC stands for Specific Hydrogen-bond Adsorption Resolution Column. Hydrogen bonding is an interaction (attraction) of bound hydrogen atom to the molecules with electronegative atoms such as oxygen, nitrogen, and fluorine.
Select options
Paraquat, diquat and glyphosate are three of most widely used herbicides in the world. Paraquat and diquat are very polar and very basic quaternary amines. Glyphosate is an aminophosphonic analog of glycine. It is very polar and acidic at most of the pH of the mobile phase. Since glyphosate and the quats have opposite charges no ion-pairing method can be developed for the mixture of basic and acidic herbicides. All three herbicides were separated on the Obelisc R tri-modal column. Paraquat and diquat are retained by a cation-exchange mechanism, and glyphosate is retained by weak reversed-phase and strong anion-exchange mechanisms. This method can be used for analysis of common herbicides in fruits, vegetables, ground water, drinking water and other matrices. Method is LC/MS compatible and can be used to determine trace levels of herbicides.
Column | Obelisc R, 2.1×150 mm, 5 µm, 100A |
Mobile Phase | MeCN – 30% |
Buffer | Gradient AmFm pH 3.0 – 5-30 mM, 10 min |
Flow Rate | 0.4 ml/min |
Detection | UV, 250 nm, ELSD |
Class of Compounds |
Insecticide, Herbicide, Fungicide, Hydrophobic, Ionizable |
Analyzing Compounds | Paraquat, Diquat, Glyphosate |
SIELC has developed the mixed-mode Obelisc™ columns to be the first commercially available columns with Liquid Separation Cell technology (LiSC™). This cost effective duo can replace multiple HPLC columns such as reversed-phase (RP), AQ-type reversed-phase, polar-embedded group RP columns, normal-phase, cation-exchange, anion- exchange, ion-exclusion, and HILIC (Hydrophilic Interaction Liquid Chromatography) columns. By controlling just three orthogonal method parameters - Buffer concentration, Buffer pH, and Organic Modifier Concentration - users can adjust the column properties with pinpoint precision to separate complex mixtures.
Select options
Paraquat and diquat are two of most widely used herbicides in the world. Both compounds are toxic for humans and animals. Presence of paraquat and diquat in water is regulated by EPA. Paraquat and diquat have two quaternary amines, making them very polar molecules. Paraquat and diquat also have similar formula. Due to low hydrophobicity and highly basic properties, they show limited retention on reversed-phase columns and produce very poor peak shape due to the residual silanol interactions. Primesep AB and Obelisc R column retain and separate these two compounds with perfect peak shape.
SIELC has developed the mixed-mode Obelisc™ columns to be the first commercially available columns with Liquid Separation Cell technology (LiSC™). This cost effective duo can replace multiple HPLC columns such as reversed-phase (RP), AQ-type reversed-phase, polar-embedded group RP columns, normal-phase, cation-exchange, anion- exchange, ion-exclusion, and HILIC (Hydrophilic Interaction Liquid Chromatography) columns. By controlling just three orthogonal method parameters - Buffer concentration, Buffer pH, and Organic Modifier Concentration - users can adjust the column properties with pinpoint precision to separate complex mixtures.
Select optionsThe Primesep family of mixed-mode columns offer a wide variety of stationary phases with an unprecedented selectivity in the separation of a broad array of chemical compounds and in multiple applications. Corresponding Primesep guard columns are available with all stationary phases and do not require holders. SIELC offers a method development service which is available for all customers. Ask about our special custom LC-phases tailored for specific separations.
Select options
Paraquat and diquat are two of most widely used herbicides in the world. Both compounds are toxic for humans and animals. Presence of paraquat and diquat in water is regulated by EPA. Paraquat and diquat have two quaternary amines, making them very polar molecules. Paraquat and diquat also have similar formula. Due to low hydrophobicity and highly basic properties, they show limited retention on reversed-phase columns and produce very poor peak shape due to the residual silanol interactions. Primesep AB and Obelisc R column retain and separate these two compounds with perfect peak shape. Method can be used for analysis of paraquat and diquat in soil, ground and drinking water, and other samples. Method allows to separate both compounds in one run without ion-pairing reagent.
SIELC has developed the mixed-mode Obelisc™ columns to be the first commercially available columns with Liquid Separation Cell technology (LiSC™). This cost effective duo can replace multiple HPLC columns such as reversed-phase (RP), AQ-type reversed-phase, polar-embedded group RP columns, normal-phase, cation-exchange, anion- exchange, ion-exclusion, and HILIC (Hydrophilic Interaction Liquid Chromatography) columns. By controlling just three orthogonal method parameters - Buffer concentration, Buffer pH, and Organic Modifier Concentration - users can adjust the column properties with pinpoint precision to separate complex mixtures.
Select optionsThe Primesep family of mixed-mode columns offer a wide variety of stationary phases with an unprecedented selectivity in the separation of a broad array of chemical compounds and in multiple applications. Corresponding Primesep guard columns are available with all stationary phases and do not require holders. SIELC offers a method development service which is available for all customers. Ask about our special custom LC-phases tailored for specific separations.
Select options© SIELC Technologies. 2002 - 2023
Address: 804 Seton Court, Wheeling, IL USA 60090
Tel: (847) 229-2629 | Fax: (847) 655-6079
Sales, Refund and Returns Policy
Email: mail@sielc.com | Sitemap