HPLC Method for Analysis of Inorganic anions on BIST™A+ Column

 

Separation type: Bridge Ion Separation Technology, or BIST™
 

High Performance Liquid Chromatography (HPLC) Method for Analysis of Inorganic anions, Chloride, Bromide, Nitrate, Iodide,  Perchlorate

Using SIELC’s newly introduced BIST™ method, a mixture of many different inorganic anions can be separated on a negatively-charged, cation-exchange BIST™ A column, contrary to conventional chromatographic wisdom. There are two keys to this retention method: 1) a multi-charged, positive buffer, such as N,N,N’,N’-Tetramethyl-1,3-propanediamine (TMDAP), which acts as a bridge, linking the negatively-charged anion analytes to the negatively-charged column surface and 2) a mobile phase consisting mostly of organic solvent (such as MeCN) to minimize the formation of a solvation layer around the charged analytes. Other positively-charged buffers that can generate BIST™ include Calcium acetate and Magnesium acetate. Using this new and unique analysis method, these anions can be separated, retained, and detected through ELSD. This method is also compatible with Mass Spectrometry.

Condition

Column BIST™ A+, 4.6×50 mm, 5µm, 100A
Mobile Phase MeCN – 90%
Buffer TMDAP ( N,N,N’,N’-Tetramethyl-1,3-diaminopropane) formate – 5 mM pH 4.0
Flow Rate 1.0 ml/min
Detection ELSD, 70C

 

Description

Class of Compounds
 Acid, Inorganic anion
Analyzing Compounds Chloride, Bromide, Nitrate, Iodide,  Perchlorate, TFA, Methanesulfonic acid

Application Column

BIST A+

Column Diameter: 4.6 mm
Column Length: 50 mm
Particle Size: 10 µm
Pore Size: 100 A

Add to cart
Application Analytes:
Bromide
Chloride
Iodide
Methanesulfonic Acid
Nitrate
Perchlorate
TFA (Trifluoroacetic Acid)

Application Detection:
ELSD Detection
SIELC Technologies usually develops more than one method for each compound. Therefore, this particular method may not be the best available method from our portfolio for your specific application. Before you decide to implement this method in your research, please send us an email to research@sielc.com so we can ensure you get optimal results for your compound/s of interest.