1-Methylxanthine structural formula

CAS Number6136-37-4
Molecular FormulaC6H6N4O2
Molecular Weight166.140
  • 1-Methylxanthine
  • 1-Methyl-3,7-dihydro-1H-purine-2,6-dione
  • 1H-Purine-2,6-dione, 3,7-dihydro-1-methyl-
  • 6136-37-4
  • EINECS 228-108-5
  • 1H-Purine-2,6-dione, 3,7-dihydro-1-methyl-
  • 1-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione
  • 1-methyl-7H-xanthine


HPLC Separation of Caffeine, 3- Methylxanthine, 1- Methylxanthine, Xanthine

June 15, 2012

HPLC Separation of Caffeine, 3- Methylxanthine, 1- Methylxanthine, Xanthine

Application Notes: Xanthines are polar neutral compounds which are hard to retain and separate by traditional reversed-phase chromatography. However a hydrogen bonding method makes separation possible due to an observable correlation between the number of hydrogens available for interaction and retention time. Molecules with no hydrogens available for interactions retain less, and compound with multiple hydrogen donors retain the most. Retention time can be controlled by changing ratio of ACN:MeOH. Other protic and aprotic solvents can be used to control retention time and selectivity of separation.

Application Columns: SHARC 1, 3.2×100 mm, 5 um, 100A, To learn more about SHARC 1 columns click here. To order this column click here. To see more chromatographic separations check our web site.

Application Compounds:  Caffeine, 3-methylxanthine, 1-methylxanthine, and xanthine


Column Sharc 1, 3.2×100 mm, 5 µm, 100A
Mobile Phase MeCN/MeOH
Buffer AmFm, Formic acid
Flow Rate 1.0 ml/min
Detection UV, 270 nm


Class of Compounds
Drug, Acid, Hydrophilic, Ionizable, Vitamin, Supplements
Analyzing Compounds Caffeine, 3- Methylxanthine, 1- Methylxanthine, Xanthine

Application Column


The SHARC™ family of innovative columns represents the first commercially available columns primarily utilizing separation based on hydrogen bonding. SHARC stands for Specific Hydrogen-bond Adsorption Resolution Column. Hydrogen bonding involves an interaction or attraction between a bound hydrogen atom and molecules containing electronegative atoms, such as oxygen, nitrogen, and fluorine.

Select options
Application Analytes:
SIELC Technologies usually develops more than one method for each compound. Therefore, this particular method may not be the best available method from our portfolio for your specific application. Before you decide to implement this method in your research, please send us an email to research@sielc.com so we can ensure you get optimal results for your compound/s of interest.