HPLC Method for Separation of Hydrotopic, Cationic, Nonionic and Anion Surfactants on Newcrom BH Column

HPLC Method for Analysis of Hydrotopic, Cationic, Nonionic and Anion Surfactants on Newcrom BH by SIELC Technologies

Separation type: Liquid Chromatography Mixed-mode

HPLC Method for Separation of Hydrotopic, Cationic, Nonionic and Anion Surfactants on Newcrom BH Column
HPLC Method for Separation of Hydrotopic, Cationic, Nonionic and Anion Surfactants

Surfactants, also known as surface-active agents, are compounds that lower the surface tension (or interfacial tension) between two liquids or between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, foaming agents, or dispersants.

They are often classified according to the charge of the polar head group:

Anionic Surfactants: These surfactants have a negative charge on their polar head group. Common examples include soap, sodium laureth sulfate, and sodium lauryl sulfate. They are commonly used in detergents and shampoos due to their ability to emulsify oils and hold dirt in suspension, so it can be rinsed away.

Cationic Surfactants: These surfactants have a positive charge on their polar head group. Examples include cetyltrimethylammonium bromide (CTAB) and benzalkonium chloride. These are often used as antiseptics and can also be found in hair conditioners because they reduce static cling.

Nonionic Surfactants: These surfactants have no charge on their polar head group. Examples include alcohol ethoxylates, nonylphenol ethoxylates, and polysorbates. Nonionic surfactants are often used in laundry and dishwasher detergents.

Hydrotropic Surfactants: While not a category of charge like the others, hydrotropic surfactants are a distinct class that promote the solubility of other solutes in water. Sodium xylene sulfonate and sodium cumene sulfonate are examples of hydrotropes.

The selection of a specific type of surfactant depends on the specific application and the properties of the surfactant. Some surfactants can be aggressive and irritating to skin or eyes (like certain anionic surfactants), while others are milder. Similarly, some are better at emulsifying oil or suspending dirt, while others might provide good foaming action or work better in hard water.

All compounds can be retained, separated, and analyzed using a reverse-phase Newcrom BH, 4.6 x 250 mm, 5 µm, 100 A column. The mobile phase for this method consists of water, acetonitrile (MeCN), and Ammonium formate, which serves as a buffer. This analytical method can be detected with an Evaporative Light Scattering Detector (ELSD) or any other evaporative detection method (CAD, ESI-MS).

High Performance Liquid Chromatography (HPLC) Method for Analysis of Benzalkonium chloride, Cetylpyridinium Chloride, Triton X100, 1-Pentanesulfonic acid, 1-Hexanesulfonic acid, sodium salt, 1-Heptanesulfonic acid, 1-Decanesulfonic acid, Sodium dodecyl sulfate, 1-Octanesulfonic acid

Condition

ColumnNewcrom BH, 4.6 x 250 mm, 5 µm, 100 A
Mobile PhaseGradient MeCN -40-80%, 30 min
BufferAmmonium formate pH 3.0 – 20 mM
Flow Rate1.0 ml/min
DetectionELSD, 50C

Description

Class of CompoundsAliphatic sulfonic acid
Analyzing CompoundsBenzalkonium chloride, Cetylpyridinium Chloride, Triton X100, 1-Pentanesulfonic acid, 1-Hexanesulfonic acid, sodium salt, 1-Heptanesulfonic acid, 1-Decanesulfonic acid, Sodium dodecyl sulfate, 1-Octanesulfonic acid

Application Column

Newcrom BH

Column Diameter: 4.6 mm
Column Length: 250 mm
Particle Size: 5 µm
Pore Size: 100 A

Add to cart
Application Analytes:
1-Decanesulfonic acid
1-Heptanesulfonic acid
1-Hexanesulfonic acid, sodium salt
1-Octanesulfonic acid
1-Pentanesulfonic acid
Benzalkonium chloride
Cetylpyridinium Chloride
Sodium dodecyl sulfate
Triton X100
SIELC Technologies usually develops more than one method for each compound. Therefore, this particular method may not be the best available method from our portfolio for your specific application. Before you decide to implement this method in your research, please send us an email to research@sielc.com so we can ensure you get optimal results for your compound/s of interest.